The ranks of the homotopy groups of odd degree of a finite complex

TitreThe ranks of the homotopy groups of odd degree of a finite complex
Type de publicationArticle de revue
AuteurFelix, Yves , Halperin, Steve , Thomas, Jean-Claude
EditeurElsevier
TypeArticle scientifique dans une revue à comité de lecture
Année2015
LangueAnglais
Date Mar. 2015
Numéro3
Pagination494-501
Volume219
Titre de la revueJournal of Pure and Applied Algebra
ISSN0022-4049
Résumé en anglais

Let L be a graded connected Lie algebra of finite type and finite depth (for instance the rational homotopy Lie algebra of a finite simply connected CW complex). Let L ( p ) = { L p k } k ≥ 1 . Then for any prime p, lim n ⁡ log ⁡ dim ⁡ L ( p ) ≤ n log ⁡ dim ⁡ L ≤ n = 1 . In particular for a space X, the Lie algebra L X = π ⁎ ( Ω X ) ⊗ Q and its even dimensional part L X ( 2 ) have the same log index.

Notes

Special Issue in honor of Prof. Hans-Bjørn Foxby

URL de la noticehttp://okina.univ-angers.fr/publications/ua10377
DOI10.1016/j.jpaa.2014.05.008
Lien vers le document

http://linkinghub.elsevier.com/retrieve/pii/S0022404914001157