Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation

M Salhi1, H Leblond1, F Sanchez1, M Brunel2 and A Hideur2

1 Laboratoire POMA, UMR 6136, Université d’Angers 2 Boulevard Lavoisier, 49045 Angers Cedex, France
2 Groupe d’Optique et d’Optronique, CORIA UMR 6614, Université de Rouen Boulevard de L’Université BP 12, 76801 Saint-Étienne du Rouvray Cedex, France

Received 10 May 2004, accepted for publication 9 June 2004
Published 24 June 2004
Online at stacks.iop.org/JOptA/6/774
doi:10.1088/1464-4258/6/8/006

Abstract

We investigate theoretically a fibre laser passively mode-locked with nonlinear polarization rotation. A unidirectional ring cavity is considered with a polarizer placed between two sets of a halfwave plate and a quarterwave plate. A master equation is derived and the stability of the continuous and mode-locked solutions is studied. In particular, the effect of the orientation of the four phase plates and of the polarizer on the mode-locking regime is investigated.

Keywords: fibre laser, Ginzburg–Landau equation, polarization additive pulse mode-locking

1. Introduction

Passively mode-locked fibre lasers are of great importance for various applications involving optical telecommunications. Different experimental methods have been used to achieve mode-locking operation [1–11]. In this paper we are interested in mode-locking through nonlinear polarization rotation. This technique has been successfully used to obtain short pulse generation in different rare-earth doped fibre lasers [3–5, 12–15] and is self-starting. The laser configuration is a unidirectional fibre ring cavity containing a polarizer placed between two polarization controllers. The polarization state evolves nonlinearly in the fibre as a result of the optical Kerr effect. If the polarization controllers are suitably oriented, the polarizer lets the central intense part of a pulse pass, while it blocks the low intensity wings.

Different theoretical approaches have been developed to describe the mode-locking properties of such a laser. Haus \textit{et al} [1, 2] have developed a model based on the addition of the different effects assuming that all effects are small over one round-trip of the cavity. Analytical studies of Akhmediev \textit{et al} [16, 17] are based on a normalized complex cubic Ginzburg–Landau (CGL) equation and give the stability conditions of the mode-locked solutions. On the other hand, many numerical simulations have been carried out to complete analytic approaches [18–20]. We have recently investigated experimentally and theoretically the mode-locking properties of an Yb-doped double clad fibre laser passively mode-locked through nonlinear polarization rotation [12, 21]. The optical configuration was a unidirectional ring cavity containing an optical isolator placed between two halfwave plates. Only two phase plates were considered for simplicity. The theoretical model reduces to a complex cubic Ginzburg–Landau equation whose coefficients explicitly depend on the orientation of the phase plates. The model allowed the description of both the self-starting mode-locking operation and the operating regimes as a function of the orientation of the halfwave plates. The model was then adapted to the anomalous dispersion case [22] and to the stretched-pulse operation [23]. Although our simplified model is in good agreement with the experimental results, a typical experiment includes two polarization controllers instead of two halfwave plates. Indeed, mode-locking is more easily obtained in the former case because there are more degrees of freedom. The aim of this
Following our analysis of [12], we assume that the effects of the gain bandwidth, A, where g_{ij} are [12, 24, 25].

2.1. Propagation along the ytterbium-doped fibre

The ytterbium-doped fibre has gain, birefringence, group velocity dispersion (GVD) and optical Kerr nonlinearity. The cavity contains a polarizing isolator placed between two polarization controllers.

2.2. Modelling the phase plates and the polarizer

The Jones matrix formalism is well adapted to the treatment of a combination of phase plates and polarizer. It will be used in this section. Without loss of generality, we assume that the eigenaxis at both ends of the fibre are aligned and parallel to the x- and y-axes of the laboratory frame. Let α_1 (respectively α_2) be the angle between the eigenaxis of the halfwave plate and the x-axis before (respectively after) the polarizer. Let α_3 (respectively α_4) be the angle between the eigenaxis of the quarterwave plate and the x-axis.

In the framework of their eigenaxis, the Jones matrices of the quarterwave and halfwave plates are, respectively,

$$M_{1/3} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 - i & 0 \\ i & 1 + i \end{pmatrix},$$

$$M_{1/2} = \begin{pmatrix} - i & 0 \\ 0 & i \end{pmatrix}.$$

Let M_3 (respectively M_4) be the Jones matrix of the quarterwave plate (respectively halfwave plate) after the isolator in the (Ox, Oy) frame:

$$M_3 = R(\alpha_3) M_{1/4} R(-\alpha_3),$$

$$M_4 = R(\alpha_4) M_{1/2} R(-\alpha_4),$$

where

$$R(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

is the rotation matrix of angle α.

Light exiting the polarizer passes through a set of a quarterwave and a halfwave plates. Therefore the electric field at the entrance of the fibre after the nth round trip is

$$\begin{pmatrix} u_n(0) \\ v_n(0) \end{pmatrix} = M_n M_3 M_4 \begin{pmatrix} u_n' \\ v_n' \end{pmatrix},$$

where u_n' and v_n' are the electric field components just after the polarizer.
Let M be the Jones matrix of the polarizer and M_1 (respectively M_2) the Jones matrix of the half-wave plate (respectively quarterwave) before the polarizer. In the (Ox, Oy) frame, the matrices write as

$$M = R(\theta) \begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix} R(-\theta),$$

(11)

where $\beta = 95\%$ is the transmission coefficient of the polarizer, and

$$M_1 = R(\alpha_1) M_{\beta/2} R(-\alpha_1), \quad M_2 = R(\alpha_2) M_{\beta/4} R(-\alpha_2).$$

(12)

The field after the polarizer can be written as

$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} M M_2 M_1 (u_n(L)) \\ v_n(L) \end{pmatrix},$$

(13)

where f_{n+1} is the electric field amplitude after the polarizer at the $(n+1)$th round trip.

We now replace the matrices M_1, M_2, and M_3 by expressions (11) and (12), respectively. We further take for $(u_n(L), v_n(L))$ the expressions given in (3), (4), and $(u_0(0), v_0(0))$ is replaced by equation (10). Finally, we take into account equations (7) and (8), and get a relation between f_{n+1} and f_n:

$$f_{n+1} = \beta e^{i \xi} i Q f_n + e \left(\rho - \frac{i \beta_2}{2} \right) L Q \left(\frac{\partial^2}{\partial t^2} f_n + i P f_n |f_n|^2 \right) + O(\epsilon^3),$$

(14)

where the coefficients P and Q are given in the appendix. The important fact in our analysis is that coefficients P and Q explicitly depend on the angles $\alpha_1, \alpha_2, \alpha_3, \alpha_4$, and θ. As we will see in the next section, the model will allow us to investigate the operating regime of the laser as a function of the orientation of the phase plates and the polarizer.

A stationary state is reached when $|f_{n+1}| = |f_n|$. This occurs when the gain attains its threshold value $g = g_0 + \varepsilon g_1 + O(\epsilon^2)$. g_1 is referred to as the excess of linear gain below. The dominant part of f_{n+1} is obtained at order ϵ^0:

$$f_{n+1} = \beta e^{i \xi} Q f_n + O(\epsilon).$$

(15)

As a consequence of the stationarity, the modulus of $\beta e^{i \xi} Q$ is unity. We thus obtain the expression of g_0, as

$$g_0 = -\frac{1}{2L} \ln \left(\frac{g_1}{2} \frac{Q^2}{g_1} \right) = -\frac{1}{2L} \ln \left(\frac{g_1}{2} \right) + \frac{1}{2} \ln \left(\frac{g_1}{2} \right)^2 + \epsilon \frac{e^{i \theta}}{Q} P f_n |f_n|^2 + O(\epsilon^2),$$

(16)

where ϕ_1 and ϕ_2 are defined in the appendix.

By performing a Taylor expansion of $e^{i \xi L}$, and replacing $\beta e^{i \xi} Q$ by $e^{i \theta}$, equation (14) becomes

$$f_{n+1} = e^{i \theta} (1 + \varepsilon g_1 L) f_n + e \left(\rho - \frac{i \beta_2}{2} \right) L e^{i \theta} \left(\frac{\partial^2}{\partial t^2} f_n \right) + \frac{e^{i \theta}}{Q} P f_n |f_n|^2 + O(\epsilon^2),$$

(17)

It is more convenient to describe the evolution of the field amplitude f_n by a continuous function. The discrete sequence f_n is interpolated by a continuous function and, for a large number of round trips $n \propto 1/\epsilon$, a fast rotating phase factor is set apart [12, 22], which yields the equation

$$\frac{\partial F}{\partial \xi} = ig_1 F + \left(\frac{\beta_2}{2} + i \rho \right) \frac{\partial^2 F}{\partial t^2} + (D_t + i D_i) F |F|^2,$$

(18)

where

$$F(\xi = \varepsilon n L) = f_n e^{i \omega \xi} + O(\epsilon),$$

and D_t and D_i are the real and imaginary parts of the quantity D given by

$$D = \frac{-P}{QL}.$$
The parameter \(d \) represents the chirp. The amplitude \(a(t) \) writes as

\[
a(t) = MN \text{sech}(Mt),
\]

where

\[
M = \sqrt{\frac{g_1}{pd^2 - \rho - \beta_2d}},
\]

\[
N = \sqrt{\frac{3d[4p^2 + \beta_2^2]}{2[\beta_2D_1 - 2pD_1]}}.
\]

The pulses exist if both \(M \) and \(N \) are real. Stability of the localized solution results from an equilibrium between the excess of linear gain, the quantity \(\beta_2D_1 \), and the effective nonlinear gain. Indeed, in the defocusing case where \(\beta_2D_1 < 0 \), the pulse is potentially stable if the excess of linear gain \(g_1 \) is negative and the effective nonlinear gain \(D_1 \) is positive. This criterion can be written in the mathematical form [12]

\[
(pd^2 - \rho - \beta_2d) < 0.
\]

When the effective nonlinear gain is negative, the stability of the pulses is not known at this time. Note that higher order terms or gain saturation can definitely stabilize the short pulse solution of equation (18).

4. Influence of the orientations of the phase plates and of the polarizer

In the previous section we have derived a master equation for a laser passively mode-locked by nonlinear polarization rotation. The coefficients of the equation depend on the orientation angles of the phase plates \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \), and of the polarizer \(\theta \). As a consequence, the stability of both the continuous and the mode-locked solutions also depends on these angles. Because of the large number of degrees of freedom, we cannot perform a systematic study of the stability of the solutions as a function of the five angles. In the following we have generally fixed three angles and varied the two remaining ones. In these conditions it is convenient to summarize the results in a two dimensional stability diagram which gives for any couple of varying angles the regions of stability of both the continuous and the mode-locked solutions. We have first considered \((\theta, \alpha_2, \alpha_3) = (\theta, 0^\circ, 0^\circ) \) where \(\theta \) takes the following values: \(0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ, 120^\circ, 135^\circ, 150^\circ \) and \(180^\circ \). We have plotted the stability diagram in the plane \((\alpha_1, \alpha_4)\) for each value of \(\theta \). The same studies have been done for \((\theta, \alpha_2, \alpha_3) = (0^\circ, \alpha_2, 0^\circ) \), \((0^\circ, 0^\circ, \alpha_4) \), \((30^\circ, 30^\circ, 30^\circ) \), \((45^\circ, 120^\circ, 150^\circ) \) and \((60^\circ, 30^\circ, 135^\circ) \). In the two first cases, \(\alpha_2 \) and \(\alpha_3 \) take the same values as attributed to \(\theta \). For the numerical computations, we have used the same parameters as in [12]: \(K = 1.5 \text{ m}^{-1}, \beta_2 = 0.026 \text{ ps}^2 \text{ m}^{-1}, L = 9 \text{ m} \) and \(\gamma = 3 \times 10^{-3} \text{ W}^{-1} \text{ m}^{-1} \).

A great dependance of the stability domains versus \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \), and \(\theta \) has been observed. This can be physically expected because a change in the orientation of one element leads to a relative variation of the losses undergo to the wings and the centre of the pulse. It is then possible either to favour the centre of the pulse which travels the polarizer with a minimum losses, leading to efficient mode-locking regime, or to favour the opposite case resulting in the instability of the mode-locking regime. These results are illustrated in figures 2–5. They give the stability domains of the CW and mode-locking regimes depending on the orientation angles \((\alpha_1, \alpha_4)\) of the halfwave plates, for the following orientations of the polarizer and quarterwave plates: \((\theta, \alpha_2, \alpha_3) = (0^\circ, 0^\circ, 0^\circ), (0^\circ, 0^\circ, 30^\circ), (0^\circ, 45^\circ, 0^\circ), \) and \((0^\circ, 0^\circ, 45^\circ) \), respectively. The representations have been limited to \(0^\circ \leq \alpha_1, \alpha_4 \leq 90^\circ \) because of the periodicity. Figure 2 is the same that the one in [12] where only two halfwave plates were considered. This is correct because the polarizer is aligned with the eigenaxis of the two quarterwave plates. Thus this result validates the general model including four phase plates. A large part of the computed cartographies are relatively close to figure 2, but another typical shape is shown on figure 3. Figures 4 and 5 show that the operating regime can be independent of the orientation of one of the halfwave plates. We can note on
Thus circular, and the global behaviour does not depend on orientation of this plate, the polarization entering the fibre is that enters this last halfwave plate is circular. Whatever the orientation of the polarizer and halfwave plates. We can note the large regions of instability and also the increased number of mode-locking regimes compared to the reference results of figure 2, especially on figure 8. It is interesting to point out the existence of four horizontal axes that separate abruptly the different domains and where no mode-locking is observed. They are located at values of α_3 about integer multiples of 45° on figures 6 and 7, and around 15°, 45°, 105° and 135° on figure 8. In the latter case, $\theta = 60^\circ$, while it is zero in the former. We can thus deduce that for $\alpha_3 = 60^\circ \pm 45^\circ$, polarization exiting plate no. 3 is circular, which is not modified by the last plate no. 4 ($\lambda/2$). As previously, we can assume that nonlinear polarization rotation does not occur such that mode-locking is not observed. These cases correspond indeed to the horizontal axes where α_3 is around 45° or 135° on figures 6 and 7, 15° or 105° on figure 8. In addition, these axes appear as boundaries: when α_3 passes through these axes, the ratio between the x-polarized and the y-polarized components entering the fibre passes unity, ‘inverting’ the effect of nonlinear polarization rotation and thus on mode-locking or CW operation. We have checked with other values of θ the existence of similar horizontal axes at $\alpha_3 = \theta \pm 45^\circ$, that separate abruptly mode-locking and CW domains and where mode-locking does not occur in general. Other axes, around $\alpha_3 = 0^\circ$ and 90° on figures 6 and 7 or 45° and 135° on figure 8, can be interpreted

![Figure 4](image4.png)

Figure 4. Stability diagram of the CW and the mode-locked solutions in the plane (α_1, α_4) for (θ, α_2, α_3) = (0°, 45°, 0°). The shading has the same meaning as in figure 2.

![Figure 5](image5.png)

Figure 5. Stability diagram of the CW and the mode-locked solutions in the plane (α_1, α_4) for (θ, α_2, α_3) = (0°, 0°, 45°). The shading has the same meaning as in figure 2.

![Figure 6](image6.png)

Figure 6. Stability diagram of the CW and the mode-locked solutions in the plane (α_2, α_3) for (θ, α_1, α_4) = (0°, 0°, 0°). The shading has the same meaning as in figure 2.

![Figure 7](image7.png)

Figure 7. Stability diagram of the CW and the mode-locked solutions in the plane (α_2, α_3) for (θ, α_1, α_4) = (0°, 30°, 0°). The shading has the same meaning as in figure 2.

We have then explored the dependency of the operating regimes of the laser with respect to the orientation angles (α_2, α_3) of the quarterwave plates. The periodicity versus α_2 and α_3 is 180°. Figures 6–8 give typical examples of cartographies. They are obtained for the orientations (θ, α_1, α_4) = (0°, 0°, 0°), (0°, 30°, 0°), and (60°, 30°, 135°) of the polarizer and halfwave plates. We can note the large regions of instability and also the increased number of mode-locking regions compared to the reference results of figure 2, especially on figure 8. It is interesting to point out the existence of four horizontal axes that separate abruptly the different domains and where no mode-locking is observed. They are located at values of α_3 about integer multiples of 45° on figures 6 and 7, and around 15°, 45°, 105° and 135° on figure 8. In the latter case, $\theta = 60^\circ$, while it is zero in the former. We can thus deduce that for $\alpha_3 = 60^\circ \pm 45^\circ$, polarization exiting plate no. 3 is circular, which is not modified by the last plate no. 4 ($\lambda/2$). As previously, we can assume that nonlinear polarization rotation does not occur such that mode-locking is not observed. These cases correspond indeed to the horizontal axes where α_3 is around 45° or 135° on figures 6 and 7, 15° or 105° on figure 8. In addition, these axes appear as boundaries: when α_3 passes through these axes, the ratio between the x-polarized and the y-polarized components entering the fibre passes unity, ‘inverting’ the effect of nonlinear polarization rotation and thus on mode-locking or CW operation. We have checked with other values of θ the existence of similar horizontal axes at $\alpha_3 = \theta \pm 45^\circ$, that separate abruptly mode-locking and CW domains and where mode-locking does not occur in general. Other axes, around $\alpha_3 = 0^\circ$ and 90° on figures 6 and 7 or 45° and 135° on figure 8, can be interpreted
with similar arguments. The eigenaxes of this plate are then parallel to those of wave plate no. 4 ($\alpha_4 = 0^\circ$ in the former case, 135° in the latter). Then the polarization entering the fibre is in general elliptical, but with its high-axis oriented at 45° from the x-axis and y-axis of the fibre. The maximum of x and y amplitudes in the fibre are thus identical and we can assume that nonlinear polarization rotation is not efficient. To confirm this assumption, we have plotted another cartography in the (α_2, α_3) plane with the same parameters: $\theta = 30^\circ$ and $\alpha_1 = 30^\circ$, but with $\alpha_2 = 120^\circ$ (not drawn here). In this case, two horizontal axes without any mode-locking are located at $\alpha_3 = 15^\circ$ and 105° instead of 45° and 135°. These axes correspond to orientations such that the polarization entering the fibre is elliptical with its high-axis oriented at 45° of the x-axis and y-axis of the fibre. This is thus similar to previous cases with $\alpha_2 = 0^\circ$ or 135° and we can understand that no ML occurs for these two horizontal axes. Note that in this case two other axes are observed for α_3 near 75° and 165°. Polarization exiting the plate no. 3 is then circular, which is not modified by the last plate no. 4. Nonlinear polarization rotation is then very difficult to obtain, as already mentioned.

We have seen that it is possible to give some physical interpretations concerning the influence of parameters α_2 and α_4, located just before the fibre. Polarization states can then be well understood since these elements are located just after the polarizer. In contrast, it is very difficult to interpret the influence of parameters α_1 and α_2 located at the exit of the fibre. The influence of these parameters depends strongly on polarization effects induced in the fibre, which are not directly accessible. Experimentally the role of phase plates no. 1 and no. 2 is essential because they allow the adjustment of the polarization state of the incident electric field at the entrance of the polarizer in such a way that the central part of the pulse is transmitted while the wings are blocked. However, no quantitative description of the influence of the orientation of phase plates no. 1 and no. 2 has been found due to the high complexity of the nonlinear dynamics. We just point out their key role.

Let us now consider the influence of the orientation of the polarizer θ on the operating regimes of the laser for fixed orientations of the phase plates. Some diagrams are represented in figure 9 for $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (0^\circ, 0^\circ, 0^\circ)$ (a), $(30^\circ, 45^\circ, 120^\circ, 150^\circ)$ (b), and $(30^\circ, 0^\circ, 0^\circ, 30^\circ)$ (c). We can note on these figures and also on many diagrams not reported here that for any values of the orientations of the phase plates, mode-locking can be achieved by a rotation of the polarizer.

In summary, although some behaviours can be well interpreted, it is very difficult to deduce general trends for the mode-locking properties of the laser essentially because of the large number of variable parameters. However, the model is a very powerful tool to predict the behaviour of the laser.

5. Conclusion

In conclusion we have developed a general model for a fibre laser passively mode-locked by nonlinear polarization rotation. A unidirectional ring cavity containing a polarizer placed between two sets of a halfwave and a quarterwave plates each has been considered. Starting from two coupled nonlinear propagation equations for the electric field components we have derived a unique equation for the field amplitude, which is a complex cubic Ginzburg–Landau equation. The coefficients of the equation depend explicitly on the orientation angles of the polarizer and of the phase plates. We have thus investigated the stability of both the constant amplitude and the short-pulse solutions as a function of the angles. Solutions have been found analytically. Although it is difficult to give some general trends, the model has the advantage of describing a real experiment. Indeed, it includes the linear and nonlinear characteristics of the doped fibre, two polarization controllers and a polarizer.

Appendix

We give here the coefficients of the master equation:

\[Q = e^{-ikL}\phi_1 + e^{ikL}\phi_2, \]
\[\phi_1 = (\chi_1 \cos \theta + \chi_2 \sin \theta)(\chi_3 \cos \theta + \chi_4 \sin \theta), \]
\[\phi_2 = (\chi_3 \sin \theta - \chi_4^* \cos \theta)(\chi_1^* \sin \theta - \chi_2^* \cos \theta), \]
\[\chi_1 = \frac{-\sqrt{2}}{2} \left[(i + \cos(2\alpha_1)) \cos(2\alpha_1) + \sin(2\alpha_1) \sin(2\alpha_1) \right], \]
\[\chi_2 = \frac{-\sqrt{2}}{2} \left[(i - \cos(2\alpha_1)) \sin(2\alpha_1) + \sin(2\alpha_1) \cos(2\alpha_1) \right]. \]
\[
\chi_3 = \frac{-\sqrt{2}}{2} \left[(i + \cos(2\alpha_2)) \cos(2\alpha_1) + \sin(2\alpha_1) \sin(2\alpha_2) \right],
\]
\[
\chi_4 = \frac{-\sqrt{2}}{2} \left[(i - \cos(2\alpha_2)) \sin(2\alpha_1) + \cos(2\alpha_1) \sin(2\alpha_2) \right],
\]
and
\[
P = e^{-iK}\left(\chi_3 \cos \theta + \chi_4 \sin \theta \right) (\psi_1 + \psi_2)
+ e^{iK} \left(\chi_3^* \sin \theta - \chi_4^* \cos \theta \right) (\psi_3 + \psi_4),
\]
with
\[
\psi_1 = \gamma B \frac{e^{i(2\chi + 4i\alpha)L} - 1}{2\chi + 4iK} \left(\chi_1^* \cos \theta + \chi_2^* \sin \theta \right),
\]
\[
\psi_2 = \gamma \frac{e^{i2\alpha} - 1}{2 \chi} \left(\chi_1 \cos \theta + \chi_2 \sin \theta \right),
\]
\[
\psi_3 = \gamma B \frac{e^{i(2\chi - 4i\alpha)L} - 1}{2\chi - 4iK} \left(\chi_1 \sin \theta - \chi_2 \cos \theta \right),
\]
\[
\psi_4 = \gamma \frac{e^{i2\alpha} - 1}{2 \chi} \left(\chi_1^* \sin \theta - \chi_2^* \cos \theta \right),
\]
\[
\psi_1 + \psi_2 = |A| \chi_1 \sin \theta - \chi_2 \cos \theta \right|^2 + |\chi_1 \cos \theta + \chi_2 \sin \theta|^2,
\]
\[
\psi_3 + \psi_4 = |A| \chi_1 \cos \theta + \chi_2 \sin \theta \right|^2 + |\chi_1^* \sin \theta - \chi_2^* \cos \theta|^2.
\]

References