Motion of solitons in CGL-type equations

Hervé Leblond1, Foued Amrani1, Alioune Niang1, Boris Malomed2, and Valentin Besse1

1Laboratoire de Photonique d’Angers L\varphi A EA 4464, Université d’Angers, France

2Department of Physical Electronics, Tel Aviv University, Israel
The CGL equation is

\[\frac{\partial E}{\partial z} = \delta E + \left(\beta + i \frac{D}{2} \right) \frac{\partial^2 E}{\partial t^2} + (\varepsilon + i) E |E|^2 + (\mu + i\nu) E |E|^4 \]

If \(\beta = 0 \), and \(E_0(z,t) \) solution to CGL

\[E = E_0(z,t - wz) \exp i \left[Dw t - \left(Dw^2 / 2 \right) z \right] \]

is a solution moving at inverse speed \(w \).
The CGL equation is
\[\frac{\partial E}{\partial z} = \delta E + \left(\beta + i \frac{D}{2} \right) \frac{\partial^2 E}{\partial t^2} + (\varepsilon + i) E |E|^2 + (\mu + i\nu) E |E|^4 \]

- E: electric field amplitude;
- δ: net linear gain;
- β: spectral gain bandwidth;
- $D = \pm 1$: dispersion;
- ε: cubic nonlinear gain;
- μ: quintic nonlinear gain;
- ν: 4th-order nonlinear index;
- z: number of round-trips;

If $\beta = 0$, and $E_0(z,t)$ solution to CGL

\[E = E_0(z,t - wz) \exp i \left[Dwt - \left(\frac{Dw^2}{2} \right) z \right] \]
The CGL equation is

\[\frac{\partial E}{\partial z} = \delta E + \left(\beta + i \frac{D}{2} \right) \frac{\partial^2 E}{\partial t^2} + (\varepsilon + i) E |E|^2 + (\mu + i \nu) E |E|^4 \]

If \(\beta = 0 \), and \(E_0(z,t) \) solution to CGL

\[E = E_0(z,t - wz) \exp i \left[Dwt - \left(Dw^2 / 2 \right) z \right] \]

is a solution moving at inverse speed \(w \).
If $\beta = 0$, and $E_0(z,t)$ solution to CGL

$$E = E_0(z,t - wz) \exp i \left[Dwt - \left(D\frac{w^2}{2} \right) z \right]$$

is a solution moving at inverse speed w.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
\[\beta \frac{\partial^2 E}{\partial t^2} \] breaks Galilean invariance and prevents any motion of the solitons.

- If \(\beta \neq 0 \): the moving soliton does not exist.

At \(z = 0 \), \(E = E_0 \exp i \Delta \omega t \), \(\beta = 0.55 \) instead of 0.

- Strong breaking due to the limited gain bandwidth.
1. **Motion induced by a continuous wave**
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. **The finite bandwidth of gain as a viscous friction**
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. **Transverse mobility in the presence of periodic potential**
 - Fundamental soliton
 - Dipoles and vortices
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- Experiments in mode-locked fiber lasers:
 \[\implies \text{existence of “soliton gas”} \]
- A large number of solitons in motion.
- Spectral bandwidth of gain is finite: \(\beta \neq 0 \)
- Is the motion it due to the cw component?
- Try to inject cw.

\[
\frac{\partial E}{\partial z} = \delta E + \left(\beta + i \frac{D}{2} \right) \frac{\partial^2 E}{\partial t^2} + (\varepsilon + i) E |E|^2 \\
+ (\mu + i\nu) E |E|^4 + A \exp(-i\Delta\omega_0 t)
\]

A: amplitude of injected cw; \(\Delta\omega_0 \): frequency shift.
Changing “states of matter”: soliton crystal

-200
-100
0
100
200

t

0
100
200

Z

0
200
400
600
800
1000

Soliton crystal.
\[\Delta \nu_0 = 1.2. \]
Changing “states of matter”: soliton liquid

Soliton liquid.

$\Delta \nu_0 = 0.9$.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
Changing “states of matter”: soliton gas

Soliton gas.
\[\Delta \nu_0 = 0.8. \]
Changing “states of matter” of solitons

Soliton crystal, $\Delta \nu_0 = 1.2$,
Soliton liquid, $\Delta \nu_0 = 0.9$,
Soliton gas, $\Delta \nu_0 = 0.8$.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
The different regimes vs detuning $\Delta \omega_0$ and amplitude $A = A_{cw}$ of injected cw.
For a single soliton, input of the form $E = E_0 \exp i\Delta \omega_1 t$, varying A, $\Delta \omega_0$ and $\Delta \omega_1 \implies$ Pulse motion.
For a single soliton, input of the form $E = E_0 \exp i\Delta \omega_1 t$, varying A, $\Delta \omega_0$ and $\Delta \omega_1 \implies$ Pulse motion.

The velocity depends on A and $\Delta \omega_0$ (injected cw), but not on $\Delta \omega_1$ (initial speed).

i.e. Speed is entirely determined by injected cw.

Soliton velocity vs $\Delta \nu_0 = \Delta \omega_0 / 2\pi$ for $A = 0.004$ (green dotted), 0.002 (red dashed), 0.001 (blue solid line).
For a single soliton, input of the form $E = E_0 \exp i \Delta \omega_1 t$, varying A, $\Delta \omega_0$ and $\Delta \omega_1 \implies$ Pulse motion.

Speed is entirely determined by injected cw.

Soliton velocity vs $\Delta \nu_0 = \Delta \omega_0 / 2\pi$ for $A = 0.004$ (green dotted), 0.002 (red dashed), 0.001 (blue solid line).
For a single soliton, input of the form \(E = E_0 \exp i \Delta \omega_1 t \), varying \(A \), \(\Delta \omega_0 \) and \(\Delta \omega_1 \) \(\implies \) Pulse motion.

The velocity depends on \(A \) and \(\Delta \omega_0 \) (injected cw), but not on \(\Delta \omega_1 \) (initial speed).

i.e. Speed is entirely determined by injected cw.

\[\text{Soliton velocity vs } \Delta \nu_0 = \frac{\Delta \omega_0}{2\pi} \text{ for } A = 0.004 \text{ (green dotted), } 0.002 \text{ (red dashed), } 0.001 \text{ (blue solid line).} \]

\[\text{Motion is restored but Galilean invariance is not.} \]
“Brownian motion” induced by injected cw

- Soliton velocity is fixed by the cw.
- At higher amplitudes of injected cw:
 More complex nonlinear interaction between cw and solitons.
 \[\Rightarrow \] The amplitude of cw (radiation) varies with \(t \).
- A tiny variation of the cw component in either amplitude or frequency changes radically the soliton velocity
 \[\Rightarrow \] apparently random variations of the the soliton speed.
- \[\Rightarrow \] Erratic motion of solitons, and soliton gas.
1. Motion induced by a continuous wave
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. The finite bandwidth of gain as a viscous friction
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. Transverse mobility in the presence of periodic potential
 - Fundamental soliton
 - Dipoles and vortices

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
An integral term accounting for the fast gain dynamics

\[
\frac{\partial E}{\partial z} = \delta E + \left(\beta + i \frac{D}{2} \right) \frac{\partial^2 E}{\partial t^2} + (\varepsilon + i) |E|^2 + (\mu + i\nu) |E|^4
\]

\[
-\Gamma E \int_{-\infty}^{t} (|E|^2 - \langle |E|^2 \rangle) \, dt'
\]

- Represents the decrease of the population inversion (and hence of gain) when stimulated emission occurs.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
A single pulse (or two-pulse) input is unstable:
New pulses form in front of the input (towards $t < 0$), and quickly disappear.
Unstable pulse emission repeats all along the cavity, \(\rightarrow\) multi-pulse pattern
Solitons move slowly
For larger Γ, the instability increases: pulses form and vanish faster.

Then, the pulse train does not stabilize any more: pulses are created and vanish permanently.

Generation and vanishing process \Rightarrow effective soliton motion

$\Gamma = 0.03$
- Generation and vanishing process \Rightarrow effective soliton motion
- The inverse velocity w of this motion is very large

$\Gamma = 0.1$.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
Motion of solitons in CGL-type equations
- Generation and vanishing process \implies effective soliton motion
- The inverse velocity w of this motion is very large

For high values of Γ, the moving soliton is unstable and vanishes.

Gain dynamics can induce soliton motion.
1. **Motion induced by a continuous wave**
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. **The finite bandwidth of gain as a viscous friction**
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. **Transverse mobility in the presence of periodic potential**
 - Fundamental soliton
 - Dipoles and vortices
Model including external injection, fast gain dynamics, and gain saturation.

\[
\frac{\partial E}{\partial z} = \left(\frac{g_0}{1 + \langle |E|^2 \rangle / I_s} - r\right) E + \left(\beta + i \frac{D}{2}\right) \frac{\partial^2 E}{\partial t^2} \\
+ (\varepsilon + i) E|E|^2 + (\mu + i\nu) E|E|^4 \\
- \Gamma E \int_{-\infty}^{t} (|E|^2 - \langle |E|^2 \rangle) \, dt' + A \exp(-i\Delta\omega_0 t)
\]
Gain saturation limits the number of solitons

⇒ A liquid: condensed phase, which does not fill the box

\[\Delta \nu_0 = 0.1, \; A = 0.115, \text{ with velocity compensation, } w = -0.05877. \]

- Not a crystal: no phase-locking

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
We can still have a soliton gas:

\[\Delta \nu_0 = 0.1, \ A = 0.120, \ w = -0.07040. \]
Equidistant solitons filling all the box, stable state. When $0.125 \leq A \leq 0.133$.

\[\Delta \nu_0 = 0.1, \quad A = 0.130, \quad w = -0.02755. \]

Consecutive pulses are phase-locked: a crystal, but the crystal length exactly matches the box length.
In a three bunch pattern, elastic interaction according to the Newton’s cradle scenario

\[A = 0.130, \Delta \nu_0 = 0.5 \text{ and } w = -0.0024. \]
1. Motion induced by a continuous wave
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. The finite bandwidth of gain as a viscous friction
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. Transverse mobility in the presence of periodic potential
 - Fundamental soliton
 - Dipoles and vortices

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
The CGL equation

\[u_z = \delta u + \left(\beta + i \frac{D}{2} \right) u_{tt} + (\varepsilon + i) u |u|^2 + (\mu + i \nu) u |u|^4. \]

Moving solution: \(u = u_0(t - T, z) e^{i(\omega t - kz)} \)
with \(u_0(t, z) \) solution to CGL with \(\beta = 0 \),
\(T = Vz \), \(\omega = \frac{V}{D} \) and \(k = \frac{V^2}{2D} \).

Perturbative approach: Consider some small non zero \(\beta \).
u a soliton solution,
\[M = \int_{-\infty}^{+\infty} |u|^2 dt : \text{its mass}, \]
\[T = \int_{-\infty}^{+\infty} t|u|^2 dt / M : \text{position of its center of mass}. \]
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- The CGL equation
 \[u_z = \delta u + \left(\beta + i \frac{D}{2} \right) u_{tt} + (\varepsilon + i) u |u|^2 + (\mu + i\nu) u |u|^4. \]

- Moving solution: \(u = u_0(t - T, z)e^{i(\omega t - kz)} \)
 with \(u_0(t, z) \) solution to CGL with \(\beta = 0 \),
 \(T = Vz, \quad \omega = \frac{V}{D} \) and \(k = \frac{V^2}{2D} \).

- Perturbative approach: Consider some small non zero \(\beta \).
 \(u \) a soliton solution,
 \[M = \int_{-\infty}^{+\infty} |u|^2 dt : \text{its mass}, \]
 \[T = \int_{-\infty}^{+\infty} t |u|^2 dt / M : \text{position of its center of mass}. \]
The CGL equation

\[u_z = \delta u + \left(\beta + i \frac{D}{2} \right) u_{tt} + (\varepsilon + i) u |u|^2 + (\mu + i\nu) u |u|^4. \]

Moving solution: \(u = u_0(t - T, z) e^{i(\omega t - kz)} \)
with \(u_0(t, z) \) solution to CGL with \(\beta = 0 \),
\(T = Vz \), \(\omega = \frac{V}{D} \) and \(k = \frac{V^2}{2D} \).

Perturbative approach: Consider some small non zero \(\beta \).
\(u \) a soliton solution,
\[M = \int_{-\infty}^{+\infty} |u|^2 dt : \text{its mass}, \]
\[T = \int_{-\infty}^{+\infty} t |u|^2 dt / M : \text{position of its center of mass.} \]
The velocity of the pulse is then

\[
\frac{dT}{dz} = \frac{1}{M} \int t (u_z u^* + cc) \, dt
\]

\((cc: \text{ complex conjugate}, \, u_z = \partial u/\partial z)\).

Using the CGL equation:

\[
\frac{dT}{dz} = \frac{1}{M} \left(I_1 + \frac{iD}{2} I_2 + \beta I_3 \right) \, dt,
\]

where

\[
I_1 = 2 \int t (\delta |u|^2 + \varepsilon |u|^4 + \mu |u|^6) \, dt,
\]

\[
I_2 = \int t (u_{tt} u^* - cc) \, dt,
\]

\[
I_3 = \int t (u_{tt} u^* + cc) \, dt.
\]
The velocity of the pulse is then

\[
\frac{dT}{dz} = \frac{1}{M} \int t \left(u_z u^* + cc \right) dt
\]

\(cc: \) complex conjugate, \(u_z = \partial u / \partial z \).

Using the CGL equation:

\[
\frac{dT}{dz} = \frac{1}{M} \left(I_1 + \frac{iD}{2} l_2 + \beta l_3 \right) dt,
\]

where

\[
l_1 = 2 \int t \left(\delta |u|^2 + \varepsilon |u|^4 + \mu |u|^6 \right) dt,
\]

\[
l_2 = \int t \left(u_{tt} u^* - cc \right) dt,
\]

\[
l_3 = \int t \left(u_{tt} u^* + cc \right) dt.
\]
Assumption: u_0 is a symmetrical pulse, centered at $t = T$, consequently the function $u_0(t')$, with $t' = t - T$, is even.

Then

$$I_1 = 2 \int t (\delta |u|^2 + \varepsilon |u|^4 + \mu |u|^6) \, dt,$$

becomes

$$I_1 = 2 T \int (\delta |u_0|^2 + \varepsilon |u_0|^4 + \mu |u_0|^6) \, dt'.$$

and so on.

Then we can compute the acceleration $d^2 T / dz^2$:

$$\frac{d^2 T}{dz^2} = \frac{iD}{2M} \frac{dl_2}{dz}.$$
Assumption: \(u_0 \) is a symmetrical pulse, centered at \(t = T \), consequently the function \(u_0(t') \), with \(t' = t - T \), is even.

Then

\[
l_1 = 2 \int t \left(\delta |u|^2 + \varepsilon |u|^4 + \mu |u|^6 \right) dt,
\]

becomes

\[
l_1 = 2 T \int (\delta |u_0|^2 + \varepsilon |u_0|^4 + \mu |u_0|^6) dt'.
\]

and so on.

Then we can compute the acceleration \(d^2 T/dz^2 \):

\[
\frac{d^2 T}{dz^2} = \frac{iD}{2M} \frac{dl_2}{dz}.
\]
Assumption: u_0 is a symmetrical pulse, centered at $t = T$, consequently the function $u_0(t')$, with $t' = t - T$, is even.

Then

$$l_1 = 2 \int t \left(\delta |u|^2 + \varepsilon |u|^4 + \mu |u|^6 \right) dt,$$

becomes

$$l_1 = 2T \int (\delta |u_0|^2 + \varepsilon |u_0|^4 + \mu |u_0|^6) dt'.$$

and so on.

Then we can compute the acceleration d^2T/dz^2:

$$\frac{d^2T}{dz^2} = \frac{iD}{2M} \frac{dl_2}{dz}.$$
Then we can compute the acceleration $d^2 T / dz^2$:

$$\frac{d^2 T}{dz^2} = \frac{iD}{2M} \frac{dl_2}{dz}.$$

Using integration by parts and parity we compute a set of integrals.

Finally, we obtain the expression of the force $F = Md^2 T / dz^2$:

$$F = -4\beta \int |u_{0t'}|^2 dt' V$$
Then we can compute the acceleration $d^2 T / dz^2$:

$$\frac{d^2 T}{dz^2} = \frac{iD}{2M} \frac{dl_2}{dz}.$$

Using integration by parts and parity we compute a set of integrals

Finally, we obtain the expression of the force $F = Md^2 T / dz^2$:

$$F = -4\beta \int |u_{0t'}|^2 dt' \ V$$
the equation of motion is

\[M \frac{dV}{dz} = F = -4\beta \int |u_0t'|^2 \, dt' \, V, \]

Hence, the velocity evolves as

\[V(z) = V(0)e^{-\lambda z} \]

with the decay rate

\[\lambda = \frac{4\beta}{M} \int |u_0t'|^2 \, dt'. \]
the equation of motion is

\[M \frac{dV}{dz} = F = -4\beta \int |u_{0t'}|^2 \, dt' \, V, \]

Hence, the velocity evolves as \(V(z) = V(0)e^{-\lambda z} \) with the decay rate

\[\lambda = \frac{4\beta}{M} \int |u_{0t'}|^2 \, dt'. \]
1. Motion induced by a continuous wave
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. The finite bandwidth of gain as a viscous friction
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. Transverse mobility in the presence of periodic potential
 - Fundamental soliton
 - Dipoles and vortices

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- An example of calculation

Initial velocity $V_0 = 0.7$ and gain bandwidth coefficient $\beta = 0.004$.

White line: approximate analytical solution
- Good agreement with the numerical solution.
We plot the characteristics of the pulse motion vs z

Logarithmic scale.
V: velocity; γ: acceleration and M: mass; F: force from above theory; $\Delta F/F$: relative difference between F and $M\gamma$.

Parameters: $\omega = 1$, $\beta = 0.0124$.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
Effect of finite bandwidth of gain on CGL soliton
with anomalous dispersion
is equivalent to a **viscous friction force**, if it is not too large.

To construct simplified models
to describe CGL soliton interactions
as forces between effective particles:

The lack of Galilean invariance of CGL
was a major difficulty,
since the concept of force is based on it.

With our result, we can approach soliton interaction
in a **conservative frame**.
Then, the finite bandwidth of gain could be treated
as a phenomenological friction force.
Effect of finite bandwidth of gain on CGL soliton with anomalous dispersion is equivalent to a viscous friction force, if it is not too large.

To construct simplified models to describe CGL soliton interactions as forces between effective particles:

The lack of Galilean invariance of CGL was a major difficulty, since the concept of force is based on it.

With our result, we can approach soliton interaction in a conservative frame. Then, the finite bandwidth of gain could be treated as a phenomenological friction force.
Effect of finite bandwidth of gain on CGL soliton with anomalous dispersion is equivalent to a viscous friction force, if it is not too large.

To construct simplified models to describe CGL soliton interactions as forces between effective particles:

The lack of Galilean invariance of CGL was a major difficulty, since the concept of force is based on it.

With our result, we can approach soliton interaction in a conservative frame. Then, the finite bandwidth of gain could be treated as a phenomenological friction force.
Effect of finite bandwidth of gain on CGL soliton with anomalous dispersion is equivalent to a viscous friction force, if it is not too large.

To construct simplified models to describe CGL soliton interactions as forces between effective particles:

The lack of Galilean invariance of CGL was a major difficulty, since the concept of force is based on it.

With our result, we can approach soliton interaction in a conservative frame. Then, the finite bandwidth of gain could be treated as a phenomenological friction force.
1. **Motion induced by a continuous wave**
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. **The finite bandwidth of gain as a viscous friction**
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. **Transverse mobility in the presence of periodic potential**
 - Fundamental soliton
 - Dipoles and vortices
(2+1)-D spatial Ginzburg-Landau equation:

\[
\frac{\partial u}{\partial Z} = \left[-\delta + iV(X,Y) + \frac{i}{2} \nabla^2_\perp + (i + \epsilon) |u|^2 - (i\nu + \mu) |u|^4 \right] u,
\]

\(\nabla^2_\perp = \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} \): the paraxial diffraction

A periodic potential: \(V(X,Y) = -V_0 [\cos(2X) + \cos(2Y)] \)
breaks Galilean invariance

\(\delta = 0.4, \epsilon = 1.85, \mu = 1, \nu = 0.1, V_0 = 1 \),
for which the quiescent fundamental soliton is stable.
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

Fondamental soliton
Dipoles and vortices

The stable fundamental soliton

$|u(X, Y)|$; $|u(X)|$ at $Y = 0$.

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
Motion of solitons in CGL-type equations
Input \(u = u_0 \exp (i k_0 \mathbf{R}) \),
with \(\mathbf{R} = (X, Y) \), and \(k_0 = (k_0 \cos \theta, k_0 \sin \theta) \) (0 \(\leq \theta \leq \pi/4 \))

In an amplifier, the factor \((i k_0 \mathbf{R})\)
represents a deviation of the wave vector \(\mathbf{k} \) from the \(Z \)-axis.

Indeed, CGL is derived within the SVEA:
Either \(E = \mathcal{U}(X, Y, Z - \nu T) e^{i(k_x X + k_Y Y + k_Z Z - \omega T)} + c.c., \)
or \(E = u(X, Y, Z - \nu T) e^{i(k_Z Z - \omega T)} + c.c., \)
with \(u(X, Y, Z - \nu T) = \mathcal{U}(X, Y, Z - \nu T) e^{i(k_x X + k_Y Y)}. \)
Equivalent if \(k_x, k_Y \) are small enough.
If k_0 is small, the pulse oscillates in the potential site $\{u(X, Z)\}$ in the cross section $Y = 0$, for $k_0 = 1.61$, $\theta = 0$.
For larger k_0, the pulse starts to move.
For larger k_0, the pulse starts to move.
For larger k_0, the pulse starts to move.
For larger k_0, the pulse starts to move...
For larger k_0, the pulse starts to move.

$Z = 5.29 \quad Z = 9.39 \quad Z = 17.01 \quad Z = 28.00$

$|u(X,Z)|$ at $Y = 0$, for $k_0 = 1.6878$, $\theta = 0$.

The pulse leaves a copy of it behind it.
Another example, increasing k_0:

\[Z = 5.26 \]
Another example, increasing k_0:

$Z = 9.35$
Another example, increasing k_0:

$Z = 16.95$
Another example, increasing k_0:

$Z = 24.10$
Another example, increasing k_0:

\[Z = 35.33 \]
Another example, increasing k_0:
Another example, increasing k_0:

\[Z = 48.2477, \text{ for } k_0 = 1.694 \]

An arrayed set of 5 fix + 1 moving solitons.
The total number of emitted solitons first grows fast with k_0.

- It reaches a maximum of 5 (6 with the initial one)
- Then slowly goes down to 0 (the initial one only)
For the highest k_0, the soliton moves freely

$|u(X,Z)|$ at $Y = 0$,

transverse speed, $k_0 = 2.1$, $\theta = 0$.

The soliton velocity increases, approaching a certain limit value.
Periodic elastic collisions

- A moving soliton with one fix soliton

$k_0 = 1.867, \theta = 0.$

- An example of the Newton’s-cradle scenario
1 moving and 5 fix solitons

$|u(X,Z)|$ at $Y = 0$; $k_0 = 1.693$, $\theta = 0$.

An quite complex interaction
- 1 moving and 5 fix solitons

\[u(X,Z) \] at \(Y = 0; \quad k_0 = 1.693, \theta = 0. \]

- An quite complex interaction
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- 1 moving and 5 fix solitons

![Graph showing solitons and their interactions]

\[|u(X,Z)| \text{ at } Y = 0; \quad k_0 = 1.693, \theta = 0. \]

- An quite complex interaction

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
1 moving and 5 fix solitons

\[|u(X,Z)| \text{ at } Y = 0; \quad k_0 = 1.693, \theta = 0. \]

An quite complex interaction
1 moving and 5 fix solitons

\[|u(X,Z)| \text{ at } Y = 0; \quad k_0 = 1.693, \; \theta = 0. \]

- An quite complex interaction
• 1 moving and 5 fix solitons

\[|u(X,Z)| \text{ at } Y = 0; \quad k_0 = 1.693, \quad \theta = 0. \]

• An quite complex interaction
1. Motion induced by a continuous wave
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. The finite bandwidth of gain as a viscous friction
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. Transverse mobility in the presence of periodic potential
 - Fundamental soliton
 - Dipoles and vortices
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

Fondamental soliton
Dipoles and vortices

- Moving the dipole

\[|u(X, Y)|, \text{ at } Z = 22.410, \text{ for } k_0 = 1.665, \theta = 0. \]

- 5 fix and 1 moving dipoles
Interaction of 1 moving dipole with 1 fix dipole

\[|u(X,Y,Z)| \text{ at } Y = 0, \text{ for } k_0 = 1.865. \]

- Repeated elastic collisions
- An example of the Newton’s cradle scenario
Interaction of 1 moving dipole with 1 fix dipole

\[|u(X,Y,Z)| \text{ at } Y = 0, \text{ for } k_0 = 1.865. \]

- Repeated elastic collisions
- An example of the Newton’s cradle scenario
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- The Newton’s cradle with absorption scenario

\[|u(X,Y,Z)| \text{ at } Y = 0, \text{ for } k_0 = 1.816. \]

- After several quasi-elastic elastic collisions, the moving dipole is eventually absorbed by the quiescent
- Interaction of 1 moving dipole with 2 fix dipoles

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
Motion of solitons in CGL-type equations
The Newton’s cradle with absorption scenario

\[|u(X,Y,Z)| \text{ at } Y = 0, \text{ for } k_0 = 1.816. \]

After several quasi-elastic elastic collisions, the moving dipole is eventually absorbed by the quiescent.

Interaction of 1 moving dipole with 2 fix dipoles.
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- Transient Newton's cradle with clearing the obstacle

$|u(X,Y,Z)|$ at $Y = 0$, for $k_0 = 1.884$.

- After several quasi-elastic elastic collisions, the moving dipole absorbs the stationary chain
Transient Newton’s cradle with clearing the obstacle

\[|u(X,Y,Z)| \text{ at } Y = 0, \text{ for } k_0 = 1.884. \]

After several quasi-elastic elastic collisions, the moving dipole absorbs the stationary chain.
Square-shaped (offsite-centered) vortex.

- It is unstable

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- Moving the vortex

A set of fundamental solitons is formed
- For a clockwise rotating vortex, solitons form on the other line

Amplitude at $Z \simeq 300$, for $k_0 = 1.5$, and $\theta = \pi/8, 5\pi/8, 9\pi/8, 13\pi/8$.
Moving the vortex

Amplitude at $Z \simeq 300$, for $k_0 = 1.5$, and $\theta = \pi/8$, $5\pi/8$, $9\pi/8$, $13\pi/8$.

- A set of fundamental solitons is formed
- For a clockwise rotating vortex, solitons form on the other line
Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction
Transverse mobility in the presence of periodic potential

- Moving the vortex

Amplitude at $Z \simeq 300$, for $k_0 = 1.5$, and $\theta = \pi/8, 5\pi/8, 9\pi/8, 13\pi/8$.

- A set of fundamental solitons is formed
- For a clockwise rotating vortex, solitons form on the other line

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse
Moving the vortex

Amplitude at $Z \simeq 300$, for $k_0 = 1.5$, and $\theta = \pi/8, 5\pi/8, 9\pi/8, 13\pi/8$.

- A set of fundamental solitons is formed
- For a clockwise rotating vortex, solitons form on the other line
Moving the vortex

- A set of fundamental solitons is formed
- For a clockwise rotating vortex, solitons form on the other line
- The position of the soliton set depends of the direction of the kick with respect to vortex orientation

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse

Motion of solitons in CGL-type equations
1. Motion induced by a continuous wave
 - Crystal, liquid and gas of solitons
 - Pulse motion due to gain dynamics
 - Injected continuous wave

2. The finite bandwidth of gain as a viscous friction
 - Analytical expression of the viscous friction
 - Numerical validation of the approximation

3. Transverse mobility in the presence of periodic potential
 - Fundamental soliton
 - Dipoles and vortices