Controlled Anchoring of Iron-Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic-Inorganic Nanocomposites for Magneto-Scaffolds

DocumentFichier
Fichier pdf chargé le 21/03/2019 à 10:43:04
Accès identifié
(version éditeur)
Request
TitreControlled Anchoring of Iron-Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic-Inorganic Nanocomposites for Magneto-Scaffolds
Type de publicationArticle de revue
AuteurAwada, Hussein , Samada, Al Assala , Laurencin, Danielle, Gilbert, Ryan J, Dumail, Xavier, El Jundi, Ayman, Bethry, Audrey, Pomrenke, Rebecca, Johnson, Christopher, Lemaire, Laurent
2, 3
, Franconi, Florence
2, 3
, Félix, Gautier, Larionova, Joulia, Guari, Yannick, Nottelet, Benjamin
EditeurAmerican Chemical Society
TypeArticle scientifique dans une revue à comité de lecture
Année2019
LangueAnglais
Date07 Février 2019
Pagination8519-29
Volume11
Section9
Titre de la revueACS Applied Materials & Interfaces
ISSN1944-8244
Mots-cléscore@shell nanocomposite, hybrid biomaterial, iron oxide nanoparticles, MRI and magnetic properties, poly(lactide) nanofibers
Résumé en anglais

Composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and polymers are largely present in modern (bio)materials. However, while SPIONs embedded in polymer matrices are classically reported, the mechanical and degradation properties of the polymer scaffold are impacted by the SPIONs. Therefore, the controlled anchoring of SPIONs onto polymer surfaces is still a major challenge. Herein, we propose an efficient strategy for the direct and uniform anchoring of SPIONs on the surface of functionalized-polylactide (PLA) nanofibers via a simple free ligand exchange procedure to design PLA@SPIONs core@shell nanocomposites. The resulting PLA@SPIONs hybrid biomaterials are characterized by electron microscopy (SEM and TEM) and EDXS analysis, to probe the morphology and detect elements present at the organic/inorganic interface, respectively. A monolayer of SPIONs with a complete and homogeneous coverage is observed on the surface of PLA nanofibers. Magnetization experiments show that magnetic properties of the nanoparticles are well-preserved after their grafting on the PLA fibers and that the size of the nanoparticles does not change. The absence of cytotoxicity, combined with a high sensitivity of detection in MRI both in vitro and in vivo make these hybrid nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.

URL de la noticehttp://okina.univ-angers.fr/publications/ua18800
DOI10.1021/acsami.8b19099
Lien vers le document

https://pubs.acs.org/doi/10.1021/acsami.8b19099

Titre abrégéACS Appl. Mater. Interfaces