Stimuli Thresholds for Isomerization-Induced Molecular Motions in Azobenzene-Containing Materials

V. Teboul*

Laboratoire de Photonique d’Angers EA 4464, Université d’Angers, Physics Department, 2 Bd Lavoisier, 49045 Angers, France

ABSTRACT: We use large-scale molecular dynamics simulations of the isomerizations of azobenzene molecules diluted inside a simple molecular material to investigate the effect of a modification of the cis isomer shape on the induced diffusion mechanism. To this end we simulate incomplete isomerizations, modifying the amplitude of the trans-to-cis isomerization. We find thresholds in the evolution of the host molecules mobility with the isomerization amplitude, a result predicted by the cage-breaking mechanism hypothesis (Teboul, V.; Saidinne, M.; Nunzi, J. M.; Accary, J. B. J. Chem. Phys. 2011, 134, 114517) and by the gradient pressure mechanism theory (Barrett, C. J.; Rochon, P. L.; Natansohn, A. L. J. Chem. Phys. 1998, 109, 1505−1516.). Above the threshold the diffusion then increases linearly with the variation of the chromophore size induced by the isomerization.

I. INTRODUCTION

Under the nanoscale stimuli induced by the isomerization of diluted azo-dyes, soft matter undergoes intriguingly large macroscopic transport phenomena.1 The subject has attracted a large number of investigations due to the various possible applications ranging from biological applications2−4 to the information storage5 and nanotechnology.6−8 This unexplained isomerization-induced transport is also of fundamental interest due to a possible connection16,17 with the glass-transition long-standing problem.18−21 If that transport property is without any doubt due to the photoisomerization of the dyes, the physical mechanisms that lead to that transport are still the object of conjectures. Various mechanisms have been proposed1 to explain that transport. The proposed mechanisms include the mean field induced by the dipolar attraction between the azo dyes,22,23 the incident light electric field gradient,24 the mechanical stress induced by the orientation of the dyes,25 the pressure gradients induced inside the material by the isomerizations,26,27 an isomerization-induced cage breaking process around the azo-dyes,17 then followed (or not) by the modification of spontaneous cooperative mechanisms in soft matter,16,20 the periodic modification of the free-volume28,29 around the dye induced by the isomerization, and the reptation of the dye along the polarization direction.30 To complicate somehow these pictures, we expect different physical mechanisms to appear sequentially during the surface relief grating (SRG) formation.1,31 For short time scales the chromophore’s isomerization induces molecular rearrangements around the chromophore that lead to the motion of surrounding host molecules16,17,26,27,30 and eventually to its own motion, resulting in the rotation of the chromophore even at low temperatures when the thermal diffusion is small. Then, because of the preferential light absorption in the chromophore’s dipole direction, the chromophores align themselves along a direction perpendicular to the electric field of the incident light,1,30 leading to the appearance of new physical mechanisms.22−25 Recent experiments31 show that the two different physical mechanisms (dipole-induced or isomerization-induced) also cohabit for larger time scales, a result that one expects as long as there are still isomerizations in the medium. In this work we are interested only in the short-time physical mechanisms that are directly induced by the isomerizations. Note, however, that the effect of the alignment has already been studied extensively.1,22−25

Molecular dynamics (MD) simulations32,33 is an invaluable tool to unravel condensed matter physics phenomena34−38 at the microscopic level. To shed some light on the physical mechanism at the origin of the induced transport, in this paper we use MD simulations to investigate the effect of a modification of the stimuli. For that purpose we “artificially” tune in the simulations the amplitude of the chromophore isomerization (Figure 1a,b), and then study the response generated by the corresponding variation of the isomerization-induced stimuli on the diffusion process. Our aim is to search for the existence of stimuli thresholds for the isomerization-induced diffusion. In the cage-breaking picture,17 during the isomerization process, the chromophore pushes a few nearby host molecules out of their cages, inducing diffusion. For that process to occur, the change of shape of the chromophore has to be large enough to push host molecules through their caging potential barrier into a new minimum of the mean field potential. As a result, in the cage breaking picture there is an isomerization amplitude threshold to induce diffusion. The

Received: November 17, 2014
Revised: February 10, 2015
Published: February 10, 2015
Nour smaller increase slightly the viscosity of the host but the resulting effects on the medium by the change of the effective volume of the chromophore during its isomerization. The pressure gradient, in that theory, thus has to overpass the material stress threshold to permit the molecular motions. In addition to the theoretical interest for the explanation of the physical mechanism, the existence of thresholds implies minimal conditions on the stimuli to induce the motions. More generally, we expect a study of the cis isomer shape dependence on the diffusion process to lead to optimization parameters for the SRG processes and the related applications.28−31

II. CALCULATIONS

We simulate the photoisomerization of one \(N_i = 1 \) “dispersed red one” (DR1) molecule (C\(_{18}\)H\(_{36}\)N\(_{38}\)O\(_{9}\) the probe) inside matrix of \(N = 2688, 800, \) or 300 linear molecules (the host). We use periodic boundary conditions. At constant density, \(\rho \), a decrease in the number, \(N_i \), of host molecules corresponds to a decrease in the simulation box volume, \(V_i \), and \(\rho \) is constant. For our smaller \(N \) value (\(N = 300 \)), we found that size effects increase slightly the viscosity of the host but the resulting modifications of the dynamics in the vicinity \((R < 10 \text{ Å}) \) of the chromophore are within the error margins of our results. Consequently, we find a linear increase in the induced diffusion with the chromophore’s concentration. A detailed description of the simulation procedure can be found in previous works.39,40 The main difference is that, taking into account the universality of the effect, in this article we simplify the host molecules as much as possible to better understand the effects of the isomerization on the medium. We found that simulations using methyl methacrylate host molecules,41 as in refs 39 and 40, lead to similar threshold effects to the ones we report in this study but we simplified the host to reach larger time scales and decrease the uncertainties of our results. We model the host molecules as constituted of two atoms (\(i = 1, 2 \)) that do interact with the following Lennard–Jones potentials: \(V_{ij} = 4\epsilon_{ij}(\sigma_{ij}/r)^{12} - (\sigma_{ij}/r)^{6} \) with the parameters: \(\epsilon_{11} = \epsilon_{12} = 0.5 \text{ kJ/mol} \), \(\epsilon_{22} = 0.4 \text{ kJ/mol} \), \(\sigma_{12} = 3.45 \text{ Å} \), and \(\sigma_{22} = 3.28 \text{ Å} \). We use the mass of argon for each atom of the linear host molecule that we rigidly bonded fixing the interatomic distance to \(d = 1.73 \text{ Å} \). With these parameters the host (alone or mixed with the probe) does not crystallize, even during long simulation runs. For the probe molecule, we use the same interaction potentials as those in previous works.41 Because of the large mass that we use for the atoms of the model molecules, our density is relatively large. The density is set constant at \(\rho = 2.24 \text{ g/cm}^3 \). With these parameters, below \(T = 38 \text{ K} \), the system falls out of equilibrium in our simulations; that is, \(T = 38 \text{ K} \) is the smallest temperature for which we can equilibrate the system when the chromophore does not isomerize. As a result, above that temperature the medium behaves as a viscous supercooled liquid in our simulations and below that temperature it behaves as a solid (as \(t_{\text{isomerization}} < t_g \)). We evaluate the glass-transition temperature, \(T_g \), to be slightly smaller \(T_g \approx 28 \text{ K} \) from the change of the slope of the potential energy evolution with the temperature. We use the Gear algorithm with the quaternion method to solve the equations of motions with a time step \(\Delta t = 10^{-15} \text{ s} \). The temperature is controlled using a Berendsen thermostat.43 We model the isomerization as a uniform closing and opening of the probe molecule shape from \(\text{cis} \) to \(\text{trans} \) and vice versa. We studied in detail the effects of the isomerization period, \(\tau_g \), on our results. We find that with this large period an isomerization does not influence the behavior of the system long enough to affect the next isomerization effect. That means that our period is large enough for each isomerization to be an independent process. Because of this result we do not find any aging in our system, and we find that the diffusion is proportional to the number of isomerization per second. During the isomerization the shape of the molecule is modified slightly at each time step using the quaternion method with constant quaternion variations, calculated to be in the final configuration after a 1 ps isomerization. This method corresponds to opposite continuous rotations of the two parts of the molecule that are separated by the nitrogen bonding. We model the isomerization to take place at periodic intervals whatever the surrounding local viscosity. This approximation has recently been validated experimentally as the pressure that is necessary to stop the azobenze isomerization is very large \((P > 1 \text{ GPa}) \).

Figure 1 shows the chromophore in the cis configuration. We call \(L_i \) the length of the chromophore and \(L_L \) its width, as shown in the Figure, and we call \(\phi \) the opening angle of the
chromophore. Then, from these quantities we define the angle \(\theta = \pi - \phi \). We add the index 0 for quantities corresponding to the real cis isomer (i.e., to the full isomerization). Thus, \(\theta = 0 \) when there is no isomerization and \(\theta = \theta_0 \) when the chromophore isomerizes to its real cis form. We then define the degree of isomerization as \(p = \theta/\theta_0 \). The chromophore size modification in the direction of its axis is \(\Delta x_L = L^\text{trans} - L^\text{cis} \) and perpendicularly to that axis \(\Delta x_\perp = L_{\perp} - L_{\perp}^\text{trans} \).

III. RESULTS AND DISCUSSION

Figure 2 shows the radial distribution functions (RDFs), \(g_{\text{DR}1-\text{host}}(r) \), between the chromophore in the cis configuration and the surrounding host molecules for various isomerization \(p = \theta/\theta_0 \). From the left- to the right-hand sides (first peak): red continuous line, \(p = 100\% \) (\(\theta = \theta_0 \)); blue dotted line, \(p = 50\% \); black dashed line, \(p = 0 \) (\(\theta = 0 \)). The temperature is \(T = 40 \) K. Inset: Radial distribution function between the host molecules centers of mass at the same temperature. (b) Evolution of the DR1 chromophore width (\(\Delta x_L \)) and length (\(\Delta x_\perp \)) with the angle \(\theta \) (i.e., the isomerization amplitude \(p \)). \(\theta_0 \) is the angle of the true DR1 cis isomer. Note that as the motion is not planar the angles are not sufficient to calculate \(\Delta x_L \) and \(\Delta x_\perp \); however, because we use the same closing process in all the simulations, each value of \(\theta \) corresponds in our work to only one value of \(\Delta x_L \) or \(\Delta x_\perp \).

Figure 2. (a) RDF between the chromophore center of mass and the hosts molecules centers of mass for various angles \(\theta \) (cis isomer), that is, various amplitudes of isomerizations \(p = \theta/\theta_0 \). From the left- to the right-hand sides (first peak): red continuous line, \(p = 100\% \) (\(\theta = \theta_0 \)); blue dotted line, \(p = 50\% \); black dashed line, \(p = 0 \) (\(\theta = 0 \)). The temperature is \(T = 40 \) K. Inset: Radial distribution function between the host molecules centers of mass at the same temperature. (b) Evolution of the DR1 chromophore width (\(\Delta x_L \)) and length (\(\Delta x_\perp \)) with the angle \(\theta \) (i.e., the isomerization amplitude \(p \)). \(\theta_0 \) is the angle of the true DR1 cis isomer. Note that as the motion is not planar the angles are not sufficient to calculate \(\Delta x_L \) and \(\Delta x_\perp \); however, because we use the same closing process in all the simulations, each value of \(\theta \) corresponds in our work to only one value of \(\Delta x_L \) or \(\Delta x_\perp \).

opening of the cis isomer. Note, however, that these curves represent averages taking into account the whole distribution of molecules around the DR1 chromophore, after the stabilization of the molecule positions, thus resulting in smaller variations of the distances than the ones transiently experienced by the most affected molecules. The inset shows the RDF \(g_{\text{host-host}}(r) \) between the host molecules center of masses and thus represents the medium mean structure. From that curve we see that a \(\Delta r = 2.7 \) Å motion (the distance between the two first peaks) is enough to push completely a molecule from the first neighbor shell to the second neighbor shell. The motion of a molecule to the second neighbor shell will then destabilize that shell, inducing diffusion. The RDF between the dye and the host in Figure 2a shows that behavior, as during the isomerization the different shells of neighbors are modified in the Figure.

For smaller \(\Delta r \) values, even when not large enough to induce diffusion on its own, the induced motion may be able to help Brownian motion to induce diffusion. That process will depend on the temperature. To evaluate the transient motions that generate the DR1 isomerizations inside the medium, we show in Figure 2b the evolution of the chromophore width (\(\Delta x_L \)) and length (\(\Delta x_\perp \)) with the characteristic angle \(\theta \) (displayed as percentages of the characteristic angle, \(\theta_0 \), of the true cis isomer of the DR1 molecule). We obtain these values from the locations of the different agents of the “partial cis” chromophore molecule. The Figure shows that the distances \(\Delta x_L \) and \(\Delta x_\perp \) evolve more slowly than the characteristic angle, \(\theta \), for small values of \(\theta \). Displaying the mobilities versus \(\theta \) will thus amplify artificially the thresholds. To be more accurate in the following, we will thus systematically plot our curves as a function of the change in size of the chromophore (\(\Delta x_L \) and \(\Delta x_\perp \)) instead of the characteristic angle. The Figure shows that \(\Delta x_L \) varies between 0 and 4 Å and \(\Delta x_\perp \) varies between 0 and 6 Å. There is thus no doubt that for large enough \(\theta \) values the DR1 chromophore pushes some host molecules at distances larger than the position of the potential barrier of the cage. As a result, an isomerization-induced cage-breaking mechanism is clearly possible under the conditions of our study.

Figure 3 shows for various temperatures the evolution of the host molecule diffusion with the isomerization amplitude, \(p \). The Figures show the existence of a threshold displacement value, \(\Delta x_L^{\text{threshold}} \), below which a result in good agreement with the cage-breaking picture and the gradient pressure theory. For larger isomerization amplitudes (i.e., induced displacements \(\Delta x_L > \Delta x_L^{\text{threshold}} \)), the diffusive motions increase linearly with \(\Delta x_L \), while they follow a slightly more complex evolution with \(\Delta x_\perp \). This behavior is particularly visible from a comparison of Figure 3a,b above \(T^* \) however, we found it less apparent at lower temperatures. Nevertheless, these differences between the evolutions suggest that the perpendicular motion of the chromophore (measured by \(\Delta x_\perp \)) mainly induces the diffusion because the linear dependence of \(\Delta D \) with \(\Delta x_L \) suggests that \(\Delta x_L \) is the determinant parameter. The threshold value increases from \(\Delta x_L = 0.25 \) Å at \(T = 40 \) K to \(\Delta x_L = 2.6 \) Å at \(T = 10 \) K. This threshold dependence with the temperature suggests that Brownian thermal motions facilitate the isomerization-induced cage-escaping process. In the cage-breaking picture, at the low temperature limit, we expect the threshold to tend to a value \(\Delta x_L^{\text{limit}} \approx 2.75 \) Å that corresponds to the distance between the first two peaks of the RDF \(g_{\text{host-host}}(r) \), as previously discussed. Consequently, the 2.6 Å value observed at the lowest temperature studied fits...
Figure 3. (a) Diffusion coefficient for host molecules, obtained from various isomerization amplitudes, p and displayed as a function of Δx_l. The different symbols correspond to different simulations: red full circles ($N = 300$, $t_{run} = 200$ ns) and blue empty triangles and green empty circles ($N = 800$, $t_{run} = 100$ ns). The calculation of D is restricted to host molecules located at a distance $R < 10$ Å from the chromophore. The temperature in our model is $T = 40$ K ($T > T_f$). Inset: Details of the same curves for small Δx_l values, showing the existence of a threshold. (b) As in panel a but the diffusion coefficient is here plotted versus the chromophore width, Δx_p. Inset: Details of the same curves for small Δx_l values. (c) Diffusion coefficient for host molecules, obtained from various isomerization amplitudes, p, and displayed as a function of Δx_p for different temperatures. From the left to the right-hand side: red full circles, $T = 40$ K ($N = 300$, $t_{run} = 200$ ns); blue full circles, $T = 30$ K ($N = 300$, $t_{run} = 400$ ns); green full circles, $T = 20$ K ($N = 300$, $t_{run} = 200$ ns); and purple full circles, $T = 10$ K ($N = 300$, $t_{run} = 200$ ns). For these low temperatures, the threshold is more clearly visible. From this Figure, using linear fits, we find for $T = 40$ K: $\Delta x_l^{\text{threshold}} \approx 0.25$ Å; for $T = 30$ K: $\Delta x_l^{\text{threshold}} \approx 0.95$ Å; for $T = 20$ K, $\Delta x_l^{\text{threshold}} \approx 1.9$ Å; and for $T = 10$K, $\Delta x_l^{\text{threshold}} \approx 2.6$ Å.

Figure 4. Mean square displacement of the host molecules for isomerization amplitudes, p. $T = 20$ K ($T < T_f$) and there is $N = 300$ host molecules together with one DR1 molecule in the simulation box. From bottom to top: red continuous line, $p = \theta/\theta_0 = 0$; pink dotted line, $p = 10$%; blue dashed line, $p = 20$%; green dashed line, $p = 30$%; black dashed line, $p = 40$%; gray dotted line, $p = 50$%; red continuous line, $p = 60$%; pink dotted line, $p = 70$%; blue dashed line, $p = 80$%; green dashed line, $p = 90$%; and black dashed line, $p = 100$%. The small decrease in the green curve above 50 ns is a fluctuation. Minor ticks correspond to a factor 2, 5, and 8 to the major ticks they follow.

MSD on long time scales. This behavior shows that the host molecules do not diffuse for $p < 40\%$, but we observe oscillations showing that the molecules move periodically around their equilibrium positions. Figure 4 thus shows that below a threshold $p = 40\%$, the isomerizations push the host molecules periodically inducing oscillating motions that are not large enough to induce diffusion; that is, the molecules move but stay inside their cages. These oscillations increase with the stimuli p eventually inducing diffusive motions when $\Delta r^2 > 0.4$ Å. Interestingly enough, that result corresponds to the Lindemann criterion of a vibration amplitude, Δr, reaching ~10% of the nearest-neighbor distance, d, at the melting point as $\Delta r_{\text{threshold}} \approx 0.2$ Å and $d = 2.7$ Å. Figure 4 also shows that the plateau time range of the MSD decreases when the stimuli increases (i.e., p increases or equivalently Δx_l increases).
However, the very beginning of the departure from the plateau, that is, the beginning of the cage-escaping process, appears around 10 ps, while the plateau begins at $t_p = 1$ ps. The height of the plateau also increases with the stimuli. This result suggests two possible scenarios: (i) The size of the cages (that the plateau height measures) increases with the stimuli. However, the constant density of the simulations contradicts that picture. (ii) A few molecules escape the cages, increasing the mean plateau height, while most molecules still stay inside the cages. In that picture, the number of molecules escaping their cages increases with the stimuli, increasing the mean plateau height.

To gain more insight into the diffusive process, we display in Figure 5 the Self van Hove correlation functions for the host molecules (Figure 5a,c) and for the chromophore (Figure 5b,c). The van Hove correlation function measures the distribution probability for a molecule to be a distance, r, apart from its position at time zero. $T = 40$ K, $N = 800$ host molecules and one DR1. From the left-hand side to the right: gray dashed curve, $p = 0$; blue dashed curve, $p = 10$%; pink dashed curve, $p = 20$%; black dashed curve, $p = 30$%; and red continuous curve, $p = 40$%. The molecules do not diffuse below $p = 30%$. (b) As in panel a but for the chromophore molecule. From the left-hand side to the right: gray dashed curve, $p = 0$; pink dashed curve, $p = 10$%; blue dashed curve, $p = 20$%; black dashed curve, $p = 30$%; and red continuous curve, $p = 40$%. The chromophore does not diffuse below $p = 40%$. (c) Self van Hove correlation function $G_r(r,t)$ (here $t = 2.4$ ns) of the host molecules compared with the van Hove of the chromophore for $p = 100%$. $T = 40$ K, $N = 800$ host molecules and one DR1. Blue dashed curve, chromophore; red continuous curve, host. The host van Hove function is characteristic of liquids continuous diffusive motions, while hopping solid-like motions are present in the chromophore’s van Hove function.

IV. CONCLUSIONS

We have studied the effect of a modification of the stimuli on the isomerization-induced transport in azobenzene-containing materials. We found that the diffusion does not increase continuously with the stimuli but that there are stimuli thresholds below which the repeated isomerizations do not induce diffusion in the material. When the temperature decreases we found that the stimuli threshold increases, suggesting that thermal-activated processes facilitate the diffusion. Above the threshold value the diffusion then increases linearly with the stimuli. The MSDs show, below the threshold, induced oscillations of motions that increase with the stimuli. At the threshold, we found oscillations amplitudes around 13% of the nearest neighbor distance ($\Delta r \approx 13%$, d), a result that recalls the Lindemann criterion for melting. These results support two models, the induced cage-breaking mechanism and the gradient pressure theory, as the origin of the isomerization-induced diffusion in azobenzene-containing materials.

AUTHOR INFORMATION

Corresponding Author

E-mail: victor.teboul@univ-angers.fr.

Notes

The authors declare no competing financial interest.

REFERENCES

