On the characterization of flowering curves using Gaussian mixture models

DocumentFichier
Fichier pdf chargé le 18/04/2016 à 21:47:50
Accès libre
(version auteur)
fichier
TitreOn the characterization of flowering curves using Gaussian mixture models
Type de publicationArticle de revue
AuteurProïa, Frédéric , Pernet, Alix , Thouroude, Tatiana , Michel, Gilles , Clotault, Jérémy
EditeurElsevier
TypeArticle scientifique dans une revue à comité de lecture
Année2016
LangueAnglais
Date7 août 2016
Pagination75-88
Volume402
Titre de la revueJournal of Theoretical Biology
ISSN0022-5193
Mots-clésCharacterization of curves, Classification of curves, Flowering curves, Gaussian mixture models, Longitudinal k-means algorithm, Principal component analysis, Reblooming behavior, Recurrent flowering
Résumé en anglais

In this paper, we develop a statistical methodology applied to the characterization of flowering curves using Gaussian mixture models. Our study relies on a set of rosebushes flowering data, and Gaussian mixture models are mainly used to quantify the reblooming properties of each one. In this regard, we also suggest our own selection criterion to take into account the lack of symmetry of most of the flowering curves. Three classes are created on the basis of a principal component analysis conducted on a set of reblooming indicators, and a subclassification is made using a longitudinal $k$--means algorithm which also highlights the role played by the precocity of the flowering. In this way, we obtain an overview of the correlations between the features we decided to retain on each curve. In particular, results suggest the lack of correlation between reblooming and flowering precocity. The pertinent indicators obtained in this study will be a first step towards the comprehension of the environmental and genetic control of these biological processes.

URL de la noticehttp://okina.univ-angers.fr/publications/ua14129
DOI10.1016/j.jtbi.2016.04.022
Lien vers le document

http://www.sciencedirect.com/science/article/pii/S0022519316300509