Automatic Kernel Selection for Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte Carlo

TitreAutomatic Kernel Selection for Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte Carlo
Type de publicationArticle de revue
AuteurBen Abdessalem, Mohamed-Anis , Dervilis, Nikolaos , Wagg, David , Worden, Keith
PaysSuisse
EditeurFrontiers Media
VilleLausanne
TypeArticle scientifique dans une revue à comité de lecture
Année2017
LangueAnglais
Date30 Août 2017
Pagination52
Volume3
Titre de la revueFrontiers in built environment
ISSN2297-3362
Résumé en anglais

The current work introduces a novel combination of two Bayesian tools, Gaussian Processes (GPs), and the use of the Approximate Bayesian Computation (ABC) algorithm for kernel selection and parameter estimation for machine learning applications. The combined methodology that this research article proposes and investigates offers the possibility to use different metrics and summary statistics of the kernels used for Bayesian regression. The presented work moves a step toward online, robust, consistent, and automated mechanism to formulate optimal kernels (or even mean functions) and their hyperparameters simultaneously offering confidence evaluation when these tools are used for mathematical or engineering problems such as structural health monitoring (SHM) and system identification (SI).

URL de la noticehttp://okina.univ-angers.fr/publications/ua16933
DOI10.3389/fbuil.2017.00052
Lien vers le document

https://www.frontiersin.org/articles/10.3389/fbuil.2017.00052/full

Titre abrégéFront. built environ.