Document | Fichier |
---|---|
Fichier pdf chargé le 20/01/2014 à 18:15:28 Accès libre (version auteur) | fichier |
Titre | Kahler geometry and Burgers' vortices |
Type de publication | Communication |
Type | Communication avec actes dans un congrès |
Année | 2009 |
Langue | Anglais |
Date du colloque | 27-29/08/2009 |
Titre du colloque | Ukrainian Mathematical Congress |
Titre des actes ou de la revue | Proceedings of Institute of Mathematics of National Academy of Sciences of Ukraine |
Volume | 16 |
Pagination | 303 - 321 |
Auteur | Roulstone, Ian, Banos, Bertrand, Gibbon, J. D, Roubtsov, Vladimir |
Pays | Ukraine |
Editeur | Institute of Mathematics of National Academy of Sciences of Ukraine |
Ville | Kiev |
Résumé en anglais | We study the Navier-Stokes and Euler equations of incompressible hydrodynamics in two spatial dimensions. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation using Monge-Amp`ere structures. In two dimensional flows where the laplacian of the pressure is positive, a K¨ahler geometry is described on the phase space of the fluid; in regions where the laplacian of the pressure is negative, a product structure is described. These structures can be related to the ellipticity and hyperbolicity (respectively) of a Monge-Amp`ere equation. We then show how this structure can be extended to a class of canonical vortex structures in three dimensions. |
URL de la notice | http://okina.univ-angers.fr/publications/ua65 |
Lien vers le document en ligne |