Titre | From Declarative Set Constraint Models to “Good” SAT Instances |
Type de publication | Communication |
Type | Communication avec actes dans un congrès |
Année | 2014 |
Langue | Anglais |
Titre du colloque | Artificial Intelligence and Symbolic Computation |
Titre des actes ou de la revue | Lecture Notes in Computer Science |
Volume | 8884 |
Auteur secondaire | Aranda-Corral, Gonzalo A, Calmet, Jacques, Martín-Mateos, Francisco J |
Auteur | Lardeux, Frédéric , Monfroy, Eric |
ISBN | 978-3-319-13769-8 |
Résumé en anglais | On the one hand, Constraint Satisfaction Problems allow one to declaratively model problems. On the other hand, propositional satisfiability problem (SAT) solvers can handle huge SAT instances. We thus present a technique to declaratively model set constraint problems, to reduce them, and to encode them into ”good” SAT instances. We illustrate our technique on the well-known nqueens problem. Our technique is simpler, more expressive, and less error-prone than direct hand modeling. The SAT instances that we automatically generate are rather small w.r.t. hand-written instances. |
URL de la notice | http://okina.univ-angers.fr/publications/ua8015 |
DOI | 10.1007/978-3-319-13770-4_8 |