Divergent Series, Summability and Resurgence III. Resurgent Methods and the First Painlevé Equation

TitreDivergent Series, Summability and Resurgence III. Resurgent Methods and the First Painlevé Equation
Type de publicationLivre
TypeOuvrage scientifique
Année2016
LangueAnglais
Nombre de pages240
EditionSpringer
AuteurDelabaere, Eric
EditeurSpringer
ISBNISBN 978-3-319-28999-1
Mots-clésasymptotics, Painlevé equation, Resurgence
Résumé en anglais

The aim of this volume is two-fold. First, to show how the resurgent methods can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory are developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called “bridge equation”, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. 
The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. 

URL de la noticehttp://okina.univ-angers.fr/publications/ua8558
DOI10.1007/978-3-319-29000-3
Collection

Lecture Notes in Mathematics

Lien vers le document

http://www.springer.com/fr/book/9783319289991